typst/schule/mathe/MA_2024-11-18.typ

80 lines
1.4 KiB
Text

#import "@preview/grape-suite:1.0.0": exercise
#import exercise: project, task, subtask
#set text(lang: "de")
#show: project.with(
title: [Kettenregel],
seminar: [Mathe Q2],
show-outline: true,
author: "Erik Grobecker",
date: datetime(day: 18, month: 11, year: 2024),
show-solutions: false,
)
#show heading.where(level: 1): it => {
counter(math.equation).update(0)
it
}
#show math.equation: set text(font: "New Computer Modern Math")
= Kettenregel
$
f(x)&= underbrace((3/4 x^2 -3), u) dot underbrace(e^(1.4-x^2), v) \
f'(x)&=u' dot v + u dot v'\
u'&=3/4 dot 2x^1\ &
= 3/2 dot x\
v'&=e^(1.4-x^2)\
&=e^(overbrace(1.4-x^2, "innere Ableitung")) \
&=e^(1.4-x^2) dot overbrace((-2x), "innere Ableitung")\
\
"Einsetzen:"\
f'(x)&=u' dot v + u dot v'\
&=3/2x dot e^(1.4-x^2) + (3/4 x^2 -3) dot e^(1.4-x^2) dot (-2x) #h(2em)&| e "entfernen" \
&=e^(1.4-x^2) dot (3/2x + (3/4x^2-3) dot (-2x))\
&=e^(1.4-x^2) dot (3/2x -3/2x^3 + 6x)\
&=e^(1.4-x^2) dot (-3/2x^3 + 15/2x)
$
Innere Ableitung:
$
u(x)&=1.4-x^2\
u'(x)&=2x
$
#pagebreak()
== Aufgabe
Leite die folgenden Funktionen ab:
*1)*
$
f(x)&=e^(2x)\
f'(x)&=e^(2x)dot 2\
&=2e^(2x)
$
*2)*
$
f(x)&=e^(3x)\
f'(x)&=e^(3x) dot 3\
&=3e^(3x)
$
*3)*
$
f(x)&=e^(-x)\
f'(x)&=e^(-x) dot (-1)\
&=-e^(-x)
$
*4)*
$
f(x)&=e^(0.5x)\
f'(x)&=e^(0.5x) dot 1 / 2\
&=1 / 2 e^(0.5x)
$