#import "@preview/grape-suite:1.0.0": exercise #import exercise: project, task, subtask #set text(lang: "de") #show: project.with( title: [Kettenregel], seminar: [Mathe Q2], show-outline: true, author: "Erik Grobecker", date: datetime(day: 18, month: 11, year: 2024), show-solutions: false, ) #show heading.where(level: 1): it => { counter(math.equation).update(0) it } #show math.equation: set text(font: "New Computer Modern Math") = Kettenregel $ f(x)&= underbrace((3/4 x^2 -3), u) dot underbrace(e^(1.4-x^2), v) \ f'(x)&=u' dot v + u dot v'\ u'&=3/4 dot 2x^1\ & = 3/2 dot x\ v'&=e^(1.4-x^2)\ &=e^(overbrace(1.4-x^2, "innere Ableitung")) \ &=e^(1.4-x^2) dot overbrace((-2x), "innere Ableitung")\ \ "Einsetzen:"\ f'(x)&=u' dot v + u dot v'\ &=3/2x dot e^(1.4-x^2) + (3/4 x^2 -3) dot e^(1.4-x^2) dot (-2x) #h(2em)&| e "entfernen" \ &=e^(1.4-x^2) dot (3/2x + (3/4x^2-3) dot (-2x))\ &=e^(1.4-x^2) dot (3/2x -3/2x^3 + 6x)\ &=e^(1.4-x^2) dot (-3/2x^3 + 15/2x) $ Innere Ableitung: $ u(x)&=1.4-x^2\ u'(x)&=2x $ #pagebreak() == Aufgabe Leite die folgenden Funktionen ab: *1)* $ f(x)&=e^(2x)\ f'(x)&=e^(2x)dot 2\ &=2e^(2x) $ *2)* $ f(x)&=e^(3x)\ f'(x)&=e^(3x) dot 3\ &=3e^(3x) $ *3)* $ f(x)&=e^(-x)\ f'(x)&=e^(-x) dot (-1)\ &=-e^(-x) $ *4)* $ f(x)&=e^(0.5x)\ f'(x)&=e^(0.5x) dot 1 / 2\ &=1 / 2 e^(0.5x) $