#import "@preview/grape-suite:1.0.0": exercise #import exercise: project, task, subtask #set text(lang: "de") #show: project.with( title: [Stunde nach der Klausur], seminar: [Mathe Q2], // show-outline: true, author: "Erik Grobecker", date: datetime(day: 5, month: 12, year: 2024), ) #show rect: set align(center) = Irgendeine HA *S. 113 Nr. 2a)* #rect($ f(x)&=90 dot 0.87^x && |:90 \ 0.5&=0.87^x && | log_(0.87)\ x &= log_(0.87)(0.5)\ x &= 4.87 $) *b)* $09 dot 0.87^10 = 22.36$\ Er hat nach 10 Jahren eine Wachstumsgeschwindigkeit von ca. 22,36 cm pro Jahr. *c)* #rect($ 50 &= 90 dot 0.87^x &&|:90 \ 5/9 &= 0.87^x &&|log \ x &= log_(0.87)(5/9) $) *d)* #rect($ f(x)&=90 dot 0.87^x \ F(x)&=90/ln(0.87) dot 0.87^x $) *e)* #rect($ integral_0^10 f(x) d x & #sym.tilde.eq 575.71 $) *f)* #rect($ integral_0^20 f(x) d x &= 606\ 606 + 90 &= 696 $) *g)* #rect($ 606:20 &= 30.3 $) = Hausaufgabe zur nächsten Stunde S. 133 Nr. 1 & 2 == Nr. 1 $ u(x) &= x^2\ v(x) &= x+2\ w(x) &= sqrt(x) $ $u+v$:\ $ x^2 + (x+2) $ $u dot v$:\ $ x^2 dot (x + 2) = x^3 + 2x^2 $ $u circle.tiny v$: $ u(v(x))\ u(x+2)\ (x+2)^2\ x^2 + 4 $ $w dot v$ $ sqrt(x) dot (x+2)\ sqrt(x) dot x + 2 dot sqrt(x) $ $w circle.tiny v$: $ w(v(x))\ w(x+2)\ sqrt(x+2) $ == Nr. 2 === a) $ f(x) &= (2x -3)^2\ "Summe:"\ f(x)&=(2x -3)^2\ &=(a+b)^2\ &=a^2 + 2a b + b^2\ &= 2x² + (2 dot (2x-3)) + (-3^2)\ &= 2x² + (4x - 6) + 9\ \ "Produkt:"\ f(x) &= (2x-3)^2\ &= (2x-3) dot (2x-3)\ \ "Kette:"\ f(x) &= (2x-3)^2\ g(u) &= u²\ h(x) &= 2x-3\ g(u(x)) &= (u(x))²\ &= (2x-3)^2 $ === b) $ g(x) &= 2 dot e^(3x) -> "ist Produkt"\ \ "Kettenregel:"\ g(u) &= 2 dot e^u\ u (x) &= 3x\ g(x) &= g(u(x))\ &= 2 dot e^(u(x))\ &= 2 dot e^(3x) $