#import "@preview/grape-suite:1.0.0": exercise #import exercise: project, task, subtask #set text(lang: "de") #show: project.with( title: "Mathe am 28.10.2024", seminar: [Mathe Q2], show-outline: true, author: "Erik Grobecker", // date: 28.10.2024, show-solutions: false ) #show math.equation: set text(font: "New Computer Modern Math") = Hausaufgaben 1. Potenzregelen wiederholen & lernen 2. S. 109 Nr. 1 d) bis j) machen == Potenzregelen == S. 109 Nr. 1 d) bis j) *d)*\ $ 3 dot e^(4x) &= 16.2\ 16.2/3 &approx 5.4\ ln(root(4, 5.4)) &approx 0.42\ ln(root(4, 16.2/3))&approx 0.42 $ Schrittweise: $ 3 dot e^(4x) &= 16.2 &&|:3\ e^(4x)&=5.4 &&|ln()\ 4x&approx 1.69 &&|:4\ x& approx 0.421 $ *e)*\ $ e^(-x)&=10\ ln(e^(-x))&=ln(10)\ -x dot -1 &approx 2.3 dot -1\ x &= -2.3 $ *f)*\ $ e^(4-x)&=1\ ln(e^(4-x))&=ln(1)\ 4-x&=0 x&=4 $ #pagebreak() *g)*\ $ e^(4-4x)&=5\ ln(e^(4-4x))&=ln(5)\ (4-4x)/4 &approx 1.61/4\ 1-x-1 &approx 0.4 -1\ -x dot (-1) &=-0.6 dot -1\ x &= 0.6 $ *h)*\ $ 2e^(-x)&=5\ (2e^(-x))/2 &=5/2\ -ln((2e^(-x))/2)&=-ln(5/2) approx -0.92 $ *i)*\ $ e^(2x+1)&=10\ ln(e^(2x+1))&=ln(10)\ (ln(e^(2x+1))-1)/2 &=(ln(10)-1)/2 approx 0.65 $ *j)*\ $ 3 dot e^(0.5x-1)&=1\ (3 dot e^(0.5x-1))/3 &= 1/3\ ln((3 dot e^(0.5x-1))/3) &= ln(1/3)\ ln((3 dot e^(0.5x-1))/3)+1 &= ln(1/3)+1\ (ln((3 dot e^(0.5x-1))/3)+1) dot 2 &= (ln(1/3)+1) dot 2 approx -0.197 $