Mathe am 28.10.2024

Inhaltsverzeichnis

1.	Natürliche Exponentialfunktionen	
	1.1. S. 105 Nr. 1e) & f)	-
	1.2. S. 105 Nr. 3c)	
2.	Umkehrfunktion der natürlichen Exponentialfunktion	3
	2.1. S. 109 Nr. 1 a) bis d)	3
2	Hausaufaahan	

1. Natürliche Exponentialfunktionen

Wiederholung: $f(x) = 2^x$ $f(x) = e^x$; $e \approx 2.71...$

1.1. S. 105 Nr. 1e) & f)

e)

$$f(x) = 2e^x + 3x^2$$
$$f'(x) = 2e^x + 6x$$
$$f''(x) = 2e^x + 6$$

f)

$$f(x) = -5e^{x} - 0.5x^{3}$$
$$f'(x) = -5e^{x} - 1.5x^{2}$$
$$f''(x) = -5e^{x} + 3x$$

1.2. S. 105 Nr. 3c)

Hauptsatz der Integralrechnung:

$$\int_{b}^{a} f(x)dx$$
$$= F(b) - F(a)$$

c)

$$\begin{split} \int_{-1}^{1} & \left(x^2 + \frac{1}{5} e^x \right) dx \\ F(-1) &= (-1)^2 + \frac{1}{5} e^{-1} \approx 1.07 \\ F(1) &= 1^2 + \frac{1}{5} e^1 \approx 1.54 \\ 1.07 - 1.54 \approx -0.47 \end{split}$$

Das richtige Ergebniss ist anscheinend $\approx 1.14\,$

Ich habe vergessen die Funktion hochzuleiten!!!

2. Umkehrfunktion der natürlichen Exponentialfunktion

Übung: $4 - [x^2] \rightarrow 4^2 - \underbrace{[\sqrt{x}]}_{\text{Umkehrfunktion}} \twoheadrightarrow 4$

Frage:

Wie wird 2^x umgekehrt?

Mit einem Logarithmus¹ wie: $\log_2(2^x)$

Wie verhält sich dies nun bei e^x ?

 $ightarrow \log_e(e^x) \Rightarrow$ auf dem Taschenrechner gibt es dafür die Taste 1n welche für \log_e steht.

Merksatz:

Der Logarithmus zur Basis e nennt man auch den natürlichen Logarithmus. Abkürzung: \ln

2.1. **S. 109 Nr. 1 a) bis d)**

a)

$$e^x = 15$$
$$\ln(15) \approx 2.71$$

b)

$$e^z = 2.4$$
$$\ln(2.4) \approx 0.88$$

z ist ja auch eine Richtung wie x

c)

$$e^{2x} = 7$$
$$\ln\left(\sqrt{7}\right) \approx 0.97$$

d)

$$3 \cdot e^{4x} = 16.2$$
$$\frac{16.2}{3} \approx 5.4$$
$$\ln\left(\sqrt[4]{5.4}\right) \approx 0.42$$

3. Hausaufgaben

- 1. Potenzregelen wiederholen & lernen
- 2. S. 109 Nr. 1 d) bis j) machen

 $^{^{\}mathrm{1}}x$ müsste allerdings erst eingesetzt werden