idk you tell me
This commit is contained in:
parent
34629231d1
commit
d95fdd7fdf
12 changed files with 684 additions and 0 deletions
110
schule/mathe/MA_2024-10-28.typ
Normal file
110
schule/mathe/MA_2024-10-28.typ
Normal file
|
@ -0,0 +1,110 @@
|
|||
#import "@preview/grape-suite:1.0.0": exercise
|
||||
#import exercise: project, task, subtask
|
||||
|
||||
#set text(lang: "de")
|
||||
|
||||
#show: project.with(
|
||||
title: "Mathe am 28.10.2024",
|
||||
seminar: [Mathe Q2],
|
||||
show-outline: true,
|
||||
author: "Erik Grobecker",
|
||||
// date: 28.10.2024,
|
||||
show-solutions: false
|
||||
)
|
||||
|
||||
#show math.equation: set text(font: "New Computer Modern Math")
|
||||
|
||||
#import "@preview/fletcher:0.5.2" as fletcher: diagram, node, edge
|
||||
|
||||
= Natürliche Exponentialfunktionen
|
||||
|
||||
Wiederholung: $f(x)=2^x$\
|
||||
$f(x)=e^x$; #h(1.5em) $e approx 2.71...$
|
||||
|
||||
== S. 105 Nr. 1e) & f)
|
||||
|
||||
*e)*
|
||||
$
|
||||
f(x)&=2e^x+3x²\
|
||||
f'(x)&=2e^x + 6x\
|
||||
f''(x)&=2e^x + 6
|
||||
$
|
||||
|
||||
*f)*
|
||||
$
|
||||
f(x)&=-5e^x-0.5x^3\
|
||||
f'(x)&=-5e^x-1.5x²\
|
||||
f''(x)&=-5e^x + 3x
|
||||
$
|
||||
|
||||
== S. 105 Nr. 3c)
|
||||
|
||||
$
|
||||
"Hauptsatz der Integralrechnung:"\
|
||||
integral^a_b f(x) d x\
|
||||
= F(b) - F(a)
|
||||
$
|
||||
|
||||
|
||||
*c)*
|
||||
$
|
||||
&integral^1_(-1) (x^2+1/5 e^x)d x\
|
||||
F(-1)&=(-1)^2+1/5 e^(-1) approx 1.07\
|
||||
F(1)&=1^2+1/5 e^(1) approx 1.54 \
|
||||
&1.07 - 1.54 approx #eval("1.07 - 1.54")
|
||||
$
|
||||
|
||||
Das richtige Ergebniss ist anscheinend $approx 1.14$\
|
||||
#text(red)[Ich habe vergessen die Funktion *hochzuleiten*!!!]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
= Umkehrfunktion der natürlichen Exponentialfunktion
|
||||
|
||||
*Übung:* #h(1em) $4 - [x^2] -> 4^2 - underbrace([sqrt(x)], "Umkehrfunktion") ->> 4$ //TODO: könnte sehr viel besser mit fletcher umgesetzt werden
|
||||
|
||||
*Frage:*\
|
||||
Wie wird $2^x$ umgekehrt?\
|
||||
Mit einem Logarithmus #footnote[$x$ müsste allerdings erst eingesetzt werden] wie: $log_2(2^x)$
|
||||
|
||||
Wie verhält sich dies nun bei $e^x$?\
|
||||
→ $log_e (e^x)$ ⇒ auf dem Taschenrechner gibt es dafür die Taste `ln` welche für $log_e$ steht.
|
||||
|
||||
*Merksatz:*\
|
||||
Der Logarithmus zur Basis $e$ nennt man auch den natürlichen Logarithmus.\
|
||||
Abkürzung: `ln`
|
||||
|
||||
== S. 109 Nr. 1 a) bis d)
|
||||
|
||||
*a)*\
|
||||
$
|
||||
e^x&=15\
|
||||
ln(15) &approx 2.71
|
||||
$
|
||||
|
||||
|
||||
*b)*\
|
||||
$
|
||||
e^z &= 2.4\
|
||||
ln(2.4) &approx 0.88
|
||||
$
|
||||
$z$ ist ja auch eine Richtung wie $x$
|
||||
|
||||
*c)*\
|
||||
$
|
||||
e^(2x)&=7\
|
||||
ln(sqrt(7)) &approx 0.97
|
||||
$
|
||||
|
||||
*d)*\
|
||||
$
|
||||
3 dot e^(4x) &= 16.2\
|
||||
16.2/3 &approx 5.4\
|
||||
ln(root(4, 5.4)) &approx 0.42
|
||||
$
|
||||
|
||||
= Hausaufgaben
|
||||
|
||||
1. Potenzregelen wiederholen & lernen
|
||||
2. S. 109 Nr. 1 d) bis j) machen
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue