Mathe Hausaufgabe zum 03.02.2025
This commit is contained in:
parent
abfead43c3
commit
9dce0154e9
2 changed files with 100 additions and 4 deletions
|
@ -6,7 +6,7 @@
|
|||
#show: project.with(
|
||||
title: [Standardabweichung],
|
||||
seminar: [Mathe Q2],
|
||||
// show-outline: true,
|
||||
show-outline: true,
|
||||
author: "Erik Grobecker",
|
||||
date: datetime(day: 27, month: 1, year: 2025),
|
||||
)
|
||||
|
@ -73,7 +73,6 @@ $
|
|||
sigma &= sqrt((1-3.5)^2 dot 2/16 + (2-3.5)^2 dot 2/16 + (3-3.5)^2 dot 4/16 + (4-3.5)^2 dot 4/16 + (5-3.5)^2 dot 2/16 + (6-3.5)^2 dot 2/16 )\
|
||||
&= 1.5 \
|
||||
|
||||
// sigma &= sqrt(sum_(i=1)(i-3.5)^2 dot 2/16)
|
||||
I I:\
|
||||
sigma &= sqrt((1-3.5)^2 dot 7/16 + (2-3.5)^2 dot 1/16 + (3-3.5)^2 dot 0/16 + (4-3.5)^2 dot 0/16 + (5-3.5)^2 dot 1/16 + (6-3.5)^2 dot 7/16 )\
|
||||
&= 2.4
|
||||
|
@ -82,3 +81,100 @@ $
|
|||
=> Streuen die Messergebnisse nur gering um den Mittelwert,
|
||||
hat man eine kleine Standardabweichung.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
=== Hausaufgabe
|
||||
|
||||
Diese ist S. 274, Nr. 2 & 3 & 7
|
||||
==== Nr. 2
|
||||
|
||||
$
|
||||
sigma &= sqrt(sum^n_(i=1) (x_1 - mu)^2 dot p_i)\
|
||||
$
|
||||
|
||||
$
|
||||
mu &= ((0 dot 10%) + (1 dot 20%) + (2 dot 30%) + (3 dot 40%))/(100%) = 2\
|
||||
sigma &= sqrt((0-mu)^2 dot 10/100 + (1-mu)^2 dot 20/100 + (2-mu)^2 dot 30/100 + (3-mu)^2 dot 40/100) = 1
|
||||
$
|
||||
|
||||
==== Nr. 3
|
||||
a)
|
||||
$
|
||||
mu &= ((1 dot 1) + (2 dot 1) + (3 dot 1))/3 = 1\
|
||||
sigma &= sqrt(
|
||||
(1 - mu)^2 dot 1/3
|
||||
+ (2 - mu)^2 dot 1/3
|
||||
+ (3 - mu)^2 dot 1/3
|
||||
)\
|
||||
&= 1.29
|
||||
$
|
||||
|
||||
b)
|
||||
$
|
||||
mu &= ((1 dot 1) + (3 dot 2))/3 = 7/3\
|
||||
sigma &= sqrt(
|
||||
(1 - mu)^2 dot 1/3
|
||||
+ (3 - mu)^2 dot 2/3
|
||||
)\
|
||||
&= 0.94
|
||||
$
|
||||
|
||||
c)
|
||||
|
||||
$
|
||||
mu &= ((-2 dot 1) + (-1 dot 1) + (0 dot 1) + (1 dot 1) + (2 dot 1))/5 = 0\
|
||||
sigma &= sqrt(
|
||||
(-2 - mu)^2 dot 1/5
|
||||
+ (-1 - mu)^2 dot 1/5
|
||||
+ (0 - mu)^2 dot 1/5
|
||||
+ (1 - mu)^2 dot 1/5
|
||||
+ (2 - mu)^2 dot 1/5
|
||||
)\
|
||||
&= 1.41
|
||||
$
|
||||
|
||||
==== Nr. 7
|
||||
a)
|
||||
$
|
||||
mu &= ((0 dot 49%) + (2 dot 1%) + (4 dot 1%) + (6 dot 49%))/(100%) = 3\
|
||||
sigma &= sqrt(
|
||||
(0 - mu)^2 dot 49/100
|
||||
+ (2 - mu)^2 dot 1/100
|
||||
+ (4 - mu)^2 dot 1/100
|
||||
+ (6 - mu)^2 dot 49/100
|
||||
)\
|
||||
&= 2.97
|
||||
$
|
||||
$
|
||||
mu &= ((0 dot 1%) + (2 dot 49%) + (4 dot 49%) + (6 dot 1%))/(100%) = 3\
|
||||
sigma &= sqrt(
|
||||
(0 - mu)^2 dot 1/100
|
||||
+ (2 - mu)^2 dot 49/100
|
||||
+ (4 - mu)^2 dot 49/100
|
||||
+ (6 - mu)^2 dot 1/100
|
||||
)\
|
||||
&= 1.08
|
||||
$
|
||||
|
||||
b)
|
||||
|
||||
Der signifikante Unterschied zwischen beiden Wertetabellen ist, dass bei der ersten, die häufigsten Werten an den Extrema konzentriert sind und in der zweiten, in der Mitte.\
|
||||
Wenn man diese als Kurven betrachten würde, wäre die erste Tabelle eine Exponentielle Funktion; und die zweite eine nach unten zeigende Exponentielle Funktion.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
= Exkurs: Summen
|
||||
|
||||
Das Summenzeichen:
|
||||
|
||||
$
|
||||
sum_(i=1)^10000 i = x\
|
||||
1+2+3+4+5+6+...+10000 = x
|
||||
$
|
||||
|
||||
Oder ein weiteres Beispiel:
|
||||
#rect(
|
||||
$
|
||||
sum^40_(x=10) x =10+11+12+...+40=775
|
||||
$
|
||||
)
|
||||
|
|
BIN
schule/mathe/pdfs/MA_2025-01-27.pdf
(Stored with Git LFS)
BIN
schule/mathe/pdfs/MA_2025-01-27.pdf
(Stored with Git LFS)
Binary file not shown.
Loading…
Add table
Reference in a new issue