143 lines
1.8 KiB
Typst
143 lines
1.8 KiB
Typst
|
#import "@preview/grape-suite:1.0.0": exercise
|
||
|
#import exercise: project, task, subtask
|
||
|
|
||
|
#set text(lang: "de")
|
||
|
|
||
|
#show: project.with(
|
||
|
title: [Stunde nach der Klausur],
|
||
|
seminar: [Mathe Q2],
|
||
|
// show-outline: true,
|
||
|
author: "Erik Grobecker",
|
||
|
date: datetime(day: 5, month: 12, year: 2024),
|
||
|
)
|
||
|
|
||
|
#show rect: set align(center)
|
||
|
|
||
|
= Irgendeine HA
|
||
|
*S. 113 Nr. 2a)*
|
||
|
|
||
|
#rect($
|
||
|
f(x)&=90 dot 0.87^x && |:90 \
|
||
|
0.5&=0.87^x && | log_(0.87)\
|
||
|
x &= log_(0.87)(0.5)\
|
||
|
x &= 4.87
|
||
|
$)
|
||
|
|
||
|
*b)*
|
||
|
$09 dot 0.87^10 = 22.36$\
|
||
|
Er hat nach 10 Jahren eine Wachstumsgeschwindigkeit von ca. 22,36 cm pro Jahr.
|
||
|
|
||
|
*c)*
|
||
|
#rect($
|
||
|
50 &= 90 dot 0.87^x &&|:90 \
|
||
|
5/9 &= 0.87^x &&|log \
|
||
|
x &= log_(0.87)(5/9)
|
||
|
$)
|
||
|
|
||
|
*d)*
|
||
|
#rect($
|
||
|
f(x)&=90 dot 0.87^x \
|
||
|
F(x)&=90/ln(0.87) dot 0.87^x
|
||
|
$)
|
||
|
|
||
|
*e)*
|
||
|
#rect($
|
||
|
integral_0^10 f(x) d x & #sym.tilde.eq 575.71
|
||
|
$)
|
||
|
|
||
|
*f)*
|
||
|
#rect($
|
||
|
integral_0^20 f(x) d x &= 606\
|
||
|
606 + 90 &= 696
|
||
|
$)
|
||
|
|
||
|
*g)*
|
||
|
#rect($
|
||
|
606:20 &= 30.3
|
||
|
$)
|
||
|
|
||
|
= Hausaufgabe zur nächsten Stunde
|
||
|
S. 133 Nr. 1 & 2
|
||
|
|
||
|
== Nr. 1
|
||
|
|
||
|
$
|
||
|
u(x) &= x^2\
|
||
|
v(x) &= x+2\
|
||
|
w(x) &= sqrt(x)
|
||
|
$
|
||
|
|
||
|
$u+v$:\
|
||
|
|
||
|
$
|
||
|
x^2 + (x+2)
|
||
|
$
|
||
|
|
||
|
$u dot v$:\
|
||
|
|
||
|
$
|
||
|
x^2 dot (x + 2) = x^3 + 2x^2
|
||
|
$
|
||
|
|
||
|
$u circle.tiny v$:
|
||
|
|
||
|
$
|
||
|
u(v(x))\
|
||
|
u(x+2)\
|
||
|
(x+2)^2\
|
||
|
x^2 + 4
|
||
|
$
|
||
|
|
||
|
$w dot v$
|
||
|
|
||
|
$
|
||
|
sqrt(x) dot (x+2)\
|
||
|
sqrt(x) dot x + 2 dot sqrt(x)
|
||
|
$
|
||
|
|
||
|
$w circle.tiny v$:
|
||
|
|
||
|
$
|
||
|
w(v(x))\
|
||
|
w(x+2)\
|
||
|
sqrt(x+2)
|
||
|
$
|
||
|
|
||
|
== Nr. 2
|
||
|
|
||
|
=== a)
|
||
|
|
||
|
$
|
||
|
f(x) &= (2x -3)^2\
|
||
|
"Summe:"\
|
||
|
f(x)&=(2x -3)^2\
|
||
|
&=(a+b)^2\
|
||
|
&=a^2 + 2a b + b^2\
|
||
|
&= 2x² + (2 dot (2x-3)) + (-3^2)\
|
||
|
&= 2x² + (4x - 6) + 9\
|
||
|
\
|
||
|
"Produkt:"\
|
||
|
f(x) &= (2x-3)^2\
|
||
|
&= (2x-3) dot (2x-3)\
|
||
|
\
|
||
|
"Kette:"\
|
||
|
f(x) &= (2x-3)^2\
|
||
|
g(u) &= u²\
|
||
|
h(x) &= 2x-3\
|
||
|
g(u(x)) &= (u(x))²\
|
||
|
&= (2x-3)^2
|
||
|
$
|
||
|
|
||
|
=== b)
|
||
|
|
||
|
$
|
||
|
g(x) &= 2 dot e^(3x) -> "ist Produkt"\
|
||
|
\
|
||
|
"Kettenregel:"\
|
||
|
g(u) &= 2 dot e^u\
|
||
|
u (x) &= 3x\
|
||
|
g(x) &= g(u(x))\
|
||
|
&= 2 dot e^(u(x))\
|
||
|
&= 2 dot e^(3x)
|
||
|
$
|