2024-10-30 21:21:19 +01:00
|
|
|
#import "@preview/grape-suite:1.0.0": exercise
|
|
|
|
#import exercise: project, task, subtask
|
|
|
|
|
|
|
|
#set text(lang: "de")
|
|
|
|
|
|
|
|
#show: project.with(
|
|
|
|
title: "Mathe am 28.10.2024",
|
|
|
|
seminar: [Mathe Q2],
|
|
|
|
show-outline: true,
|
|
|
|
author: "Erik Grobecker",
|
|
|
|
// date: 28.10.2024,
|
|
|
|
show-solutions: false
|
|
|
|
)
|
|
|
|
|
|
|
|
#show math.equation: set text(font: "New Computer Modern Math")
|
|
|
|
|
|
|
|
= Hausaufgaben
|
|
|
|
|
|
|
|
1. Potenzregelen wiederholen & lernen
|
|
|
|
2. S. 109 Nr. 1 d) bis j) machen
|
|
|
|
|
|
|
|
== Potenzregelen
|
|
|
|
|
|
|
|
== S. 109 Nr. 1 d) bis j)
|
|
|
|
|
|
|
|
*d)*\
|
|
|
|
$
|
|
|
|
3 dot e^(4x) &= 16.2\
|
|
|
|
16.2/3 &approx 5.4\
|
|
|
|
ln(root(4, 5.4)) &approx 0.42\
|
|
|
|
ln(root(4, 16.2/3))&approx 0.42
|
|
|
|
$
|
|
|
|
|
2024-11-04 12:32:17 +01:00
|
|
|
Schrittweise:
|
2024-10-30 21:21:19 +01:00
|
|
|
|
|
|
|
$
|
|
|
|
3 dot e^(4x) &= 16.2 &&|:3\
|
|
|
|
e^(4x)&=5.4 &&|ln()\
|
|
|
|
4x&approx 1.69 &&|:4\
|
|
|
|
x& approx 0.421
|
|
|
|
$
|
|
|
|
|
|
|
|
*e)*\
|
|
|
|
$
|
|
|
|
e^(-x)&=10\
|
|
|
|
ln(e^(-x))&=ln(10)\
|
|
|
|
-x dot -1 &approx 2.3 dot -1\
|
|
|
|
x &= -2.3
|
|
|
|
$
|
|
|
|
|
|
|
|
*f)*\
|
|
|
|
$
|
|
|
|
e^(4-x)&=1\
|
|
|
|
ln(e^(4-x))&=ln(1)\
|
|
|
|
4-x&=0
|
|
|
|
x&=4
|
|
|
|
$
|
|
|
|
|
2024-11-04 12:32:17 +01:00
|
|
|
#pagebreak()
|
|
|
|
|
2024-10-30 21:21:19 +01:00
|
|
|
*g)*\
|
|
|
|
$
|
|
|
|
e^(4-4x)&=5\
|
|
|
|
ln(e^(4-4x))&=ln(5)\
|
|
|
|
(4-4x)/4 &approx 1.61/4\
|
|
|
|
1-x-1 &approx 0.4 -1\
|
|
|
|
-x dot (-1) &=-0.6 dot -1\
|
|
|
|
x &= 0.6
|
|
|
|
$
|
|
|
|
|
|
|
|
*h)*\
|
|
|
|
$
|
|
|
|
2e^(-x)&=5\
|
|
|
|
(2e^(-x))/2 &=5/2\
|
|
|
|
-ln((2e^(-x))/2)&=-ln(5/2) approx -0.92
|
|
|
|
$
|
|
|
|
|
|
|
|
*i)*\
|
|
|
|
$
|
|
|
|
e^(2x+1)&=10\
|
|
|
|
ln(e^(2x+1))&=ln(10)\
|
|
|
|
(ln(e^(2x+1))-1)/2 &=(ln(10)-1)/2 approx 0.65
|
|
|
|
$
|
|
|
|
|
|
|
|
*j)*\
|
|
|
|
$
|
|
|
|
3 dot e^(0.5x-1)&=1\
|
|
|
|
(3 dot e^(0.5x-1))/3 &= 1/3\
|
|
|
|
ln((3 dot e^(0.5x-1))/3) &= ln(1/3)\
|
|
|
|
ln((3 dot e^(0.5x-1))/3)+1 &= ln(1/3)+1\
|
|
|
|
(ln((3 dot e^(0.5x-1))/3)+1) dot 2 &= (ln(1/3)+1) dot 2 approx -0.197
|
|
|
|
$
|
|
|
|
|