2024-11-11 11:01:53 +01:00
|
|
|
#import "@preview/grape-suite:1.0.0": exercise
|
|
|
|
#import exercise: project, task, subtask
|
|
|
|
|
|
|
|
#set text(lang: "de")
|
|
|
|
|
|
|
|
#show: project.with(
|
|
|
|
title: [Mathe oder so],
|
|
|
|
seminar: [Mathe Q2],
|
2024-11-11 16:51:13 +01:00
|
|
|
show-outline: true,
|
2024-11-11 11:01:53 +01:00
|
|
|
author: "Erik Grobecker",
|
|
|
|
date: datetime(day: 11, month: 11, year: 2024),
|
|
|
|
show-solutions: false
|
|
|
|
)
|
|
|
|
|
2024-11-11 16:51:13 +01:00
|
|
|
#show math.equation: set text(font: "New Computer Modern Math")
|
|
|
|
|
|
|
|
= LZK
|
|
|
|
|
|
|
|
Nr. 1\
|
|
|
|
Bestimmen sie die erste und zweite Ableitung der Funktion $f$.\
|
|
|
|
$
|
|
|
|
f(x)=1/2 (e^x -x^3)
|
|
|
|
$
|
|
|
|
|
|
|
|
Nr. 2\
|
|
|
|
Berechnen Sie das Integral mithilfer einer Stammfunktion\
|
|
|
|
$
|
|
|
|
integral^3_1 (0.25 e^x +x^2) #h(0.5em) d x
|
|
|
|
$
|
|
|
|
|
|
|
|
Nr. 3\
|
|
|
|
Schreiben Sie die Funktion so um, dass sie die Basis $e$ hat.\
|
|
|
|
$
|
|
|
|
f(x)=5 dot 4^x
|
|
|
|
$
|
|
|
|
|
|
|
|
Nr. 4\
|
|
|
|
Bestimmen Sie eine Stammfunktion zur Funktion $f$.\
|
|
|
|
$
|
|
|
|
f(x)=3 dot 2.5^x
|
|
|
|
$
|
|
|
|
|
|
|
|
= Zeug
|
|
|
|
|
|
|
|
Exponentialfunktion mit $e$ & eventuell Funktionsscharen kommen in der nächsten Klausur (in etwa zwei Wochen) vor.
|
|
|
|
|
|
|
|
= e-Funktionen
|
|
|
|
|
|
|
|
S. 109 Nr. 4a)\
|
|
|
|
$
|
|
|
|
f(x)&=e^(4x); #h(1em) I = [0;3] \ \
|
|
|
|
integral^3_0 e^(4x) #h(0.5em) d x &= [ 1/4 e^4x ]^3_0\
|
|
|
|
&= 1/4 e^(4 dot 3) - 1/4 e^(4 dot 0)\
|
|
|
|
&= 1/4 e^12 - 1/4
|
|
|
|
$
|
|
|
|
|
|
|
|
#pagebreak()
|
|
|
|
|
|
|
|
b)\
|
|
|
|
$
|
|
|
|
f(x)&=3^x; I=[-2;0]\
|
|
|
|
F(x)&=(3x)/ln(3) #h(1em) A= 8/(9 dot ln(3))\
|
|
|
|
integral^0_(-2) 3x #h(0.5em) d x &= [ (3x)/ln(3) ]^0_(-2)\
|
|
|
|
&= [(3 dot 0)/ln(3) - (3 dot (-2))/ln(3) ]\
|
|
|
|
&= 6/ln(3)
|
|
|
|
$
|
|
|
|
|
|
|
|
*Hausaufgabe:*\
|
|
|
|
S. 110 Nr. 5a) & b)
|
|
|
|
|
|
|
|
= Sachkontext/Textaufgaben
|
|
|
|
|
|
|
|
S. 113 Nr. 1
|
|
|
|
|
|
|
|
*a)*\
|
|
|
|
#table(
|
|
|
|
columns: (auto, auto, auto, auto, auto, auto, auto),
|
|
|
|
|
|
|
|
[$n$], [0], [1], [2], [3], [4], [5],
|
|
|
|
[$B(n)$], [28], [35], [44], [58], [70], [90],
|
|
|
|
[$B(n)/B(n-1)$], [], [$#calc.abs(35/28)$], [#calc.round(calc.abs(44/35), digits: 2)], [$#calc.round(calc.abs(58/44), digits: 2)$], [$#calc.round(calc.abs(70/58), digits: 2)$], [$#calc.round(calc.abs(90/70), digits: 2)$],
|
|
|
|
)
|
|
|
|
|
|
|
|
*b)*\
|
|
|
|
#table(
|
|
|
|
columns: (auto,auto,auto,auto,auto,auto,auto),
|
|
|
|
|
|
|
|
[$n$], [0], [10], [20], [30], [40], [50],
|
|
|
|
[$B(n)$], [9.1], [8.4], [7.7], [7.2], [6.6], [6.1],
|
|
|
|
[$B(n)/B(n-10)$], [], [#calc.round(digits: 2, calc.abs(8.4/9.1))], [#calc.round(digits: 2, calc.abs(7.7/8.4))], [#calc.round(digits: 2, calc.abs(7.2/7.7))], [#calc.round(digits: 2, calc.abs(6.6/7.2))], [#calc.round(digits: 2, calc.abs(6.1/6.6))],
|
|
|
|
)
|