130 lines
2.1 KiB
Typst
130 lines
2.1 KiB
Typst
|
#import "@preview/grape-suite:1.0.0": exercise
|
||
|
#import exercise: project, task, subtask
|
||
|
|
||
|
#set text(lang: "de")
|
||
|
|
||
|
#show: project.with(
|
||
|
title: [Wie werden Funktionen verknüpft],
|
||
|
seminar: [Mathe Q2],
|
||
|
// show-outline: true,
|
||
|
author: "Erik Grobecker",
|
||
|
date: datetime(day: 9, month: 12, year: 2024),
|
||
|
)
|
||
|
|
||
|
= Ganzrationale Funktionen
|
||
|
|
||
|
Wiederholung:
|
||
|
$
|
||
|
f(x) &= underbrace(3x^2, "Pf") #h(0.5em) underbrace(+2x, "Pf") #h(0.5em) underbrace(+1, "Pf")
|
||
|
$
|
||
|
|
||
|
Ganzrationale Funktionen bestehen aus einer Summe oder Differenz von Potenzfunktionen(Pf).\
|
||
|
Man sie ab mittels der Potenz- und Summenregel.
|
||
|
|
||
|
= Kettenregel
|
||
|
|
||
|
Beispiel:
|
||
|
$
|
||
|
f(x)&= e^(2x+1)\
|
||
|
g(u)&=e^u\
|
||
|
t(x)&=2x+1\
|
||
|
g(t(x)) &= f(x)\
|
||
|
#line(stroke: (dash: "dashed"))\
|
||
|
f'(x)&=g'(t(x)) dot t'(x)\
|
||
|
f'(x) &= e^(2x+1) dot 2
|
||
|
|
||
|
$
|
||
|
|
||
|
== Aufgaben
|
||
|
S. 139 Nr. a) - f)
|
||
|
|
||
|
$
|
||
|
a) #h(0.25em) & f'(x) =& 4(x+2)^3\
|
||
|
b) #h(0.25em) & f'(x) =& 24(8x+2)^2\
|
||
|
c) #h(0.25em) & f'(x) =& 15(1/2 -5x)^2\
|
||
|
d) #h(0.25em) & f'(x) =& x(x^2-5)\
|
||
|
e) #h(0.25em) & f'(x) =& 2e^(2x)\
|
||
|
f) #h(0.25em) & f'(x) =& -4e^(-4x)
|
||
|
|
||
|
$
|
||
|
|
||
|
Nr. 3 a) & b)
|
||
|
|
||
|
$
|
||
|
a)\
|
||
|
f(x) &= 2e^x\
|
||
|
f'(x) &= 2e^x\
|
||
|
\
|
||
|
g(x) &= 0.5(1-3x)^4\
|
||
|
g'(x) &= -6(1-3x)^3
|
||
|
\
|
||
|
b)\
|
||
|
f(x) &= (5-2x)^4\
|
||
|
f'(x) &= -8(5-2x)^3\
|
||
|
\
|
||
|
g(x)&=4 dot e^(2-x)\
|
||
|
g'(x)&=-4 dot e^(2-x)
|
||
|
$
|
||
|
|
||
|
= Produktregel
|
||
|
|
||
|
$
|
||
|
f(x) &= x^2 dot e^(3x)\
|
||
|
f'(x) &= 2x dot 3e^(3x) #h(1em) ???\
|
||
|
\
|
||
|
f(x) &= u dot v\
|
||
|
f'(x)&= u'(x) dot v(x) + u(x) dot v'(x)\
|
||
|
u(x)&= x^2\
|
||
|
u'(x)&=2x\
|
||
|
v(x)&= e^(3x)\
|
||
|
v'(x)&=e^(3x) dot 3\
|
||
|
&=3e^(3x)\
|
||
|
f'(x)&= 2x dot 3e^(3x) + x^2 dot 3e^(3x)
|
||
|
$
|
||
|
|
||
|
$
|
||
|
g(x)&=e^(3x)\
|
||
|
t(u)&=e^u\
|
||
|
j(x)&=3x
|
||
|
$
|
||
|
|
||
|
#pagebreak()
|
||
|
|
||
|
== Übung
|
||
|
S. 136 Nr. 1a) - d)
|
||
|
|
||
|
$
|
||
|
a)\
|
||
|
f(x)&=2x dot (4x -1)\
|
||
|
u(x)&=2x\
|
||
|
u'(x)&=2\
|
||
|
v(x)&=(4x-1)\
|
||
|
v'(x)&=4\
|
||
|
f'(x)&=2 dot (4x-1) + 2x dot 4\
|
||
|
\
|
||
|
b)\
|
||
|
f(x)&=(5x+3) dot (x+2)\
|
||
|
u(x)&=5x+3\
|
||
|
u'(x)&=5\
|
||
|
v(x)&=x+2\
|
||
|
v'(x)&=1\
|
||
|
f'(x)&=5 dot (x+2) + (5x+3) dot 1\
|
||
|
\
|
||
|
c)\
|
||
|
f(x)&=(2-5x) dot (x +2)\
|
||
|
u(x)&=2-5x\
|
||
|
u'(x)&=5\
|
||
|
v(x)&=x+2\
|
||
|
v'(x)&=1\
|
||
|
f'(x)&=5 dot (x+2) + (2-5x) dot 1\
|
||
|
\
|
||
|
d)\
|
||
|
f(x)&=2x dot e^x\
|
||
|
u(x)&=2x\
|
||
|
u'(x)&=2\
|
||
|
v(x)&=e^x\
|
||
|
v'(x)&=e^x\
|
||
|
f'(x)&=2 dot e^x + 2x dot e^x
|
||
|
$
|
||
|
|